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Abstract
We extend the single-site coherent potential approximation (CPA) to include
the effects of non-local disorder correlations (alloy short-range order) on the
electronic structure of random alloy systems. This is achieved by mapping
the original Anderson disorder problem to that of a self-consistently embedded
cluster. This cluster problem is then solved using the equations of motion
technique. The CPA is recovered for cluster size Nc = 1. Various new features,
compared to those observed in CPA, and related to repeated scattering on pairs of
sites, reflecting the effect of short-range order are clearly visible in the density
of states. It is explicitly shown that the cluster-CPA method always yields
a positive-definite density of states. Anderson localization effects have been
investigated within this approach. In general, we find that Anderson localization
sets in before band splitting occurs, and that increasing partial order drives a
continuous transition from an Anderson insulator to an incoherent metal.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

The problem of atomic short-range order (SRO) and its effect on the character of electronic
dynamics has been studied for many years now. It is relevant to the detailed understanding
of the conditions under which a transition from metallic to an Anderson localized (AL),
disordered insulator occurs with increasing disorder strength [1]. In the d = ∞ limit, the
well-known coherent potential approximation (CPA) [2] provides the exact solution of this
Anderson disorder problem. However, by construction, the CPA cannot access the specific
effects (quantum interference from short-range scattering potentials) leading to AL behaviour.
Such an endeavour demands explicit incorporation of the dynamical effect of SRO on carrier
propagation in a disordered system,and thus, a cluster generalization of the CPA. Such attempts
have indeed been carried out [3, 4], but are extremely cumbersome numerically. Additionally,
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they do not always guarantee the correct analyticity properties of the Green functions: the
few which do succeed in this respect, like the travelling cluster approximation (TCA) [4] and
the dynamical cluster approximation (DCA) [5] are extremely tedious technically. Further,
the study of the effects of SRO on carrier dynamics has, to our best knowledge, never been
attempted using these approaches. It is obvious that attempting to tackle the harder problem
of atomic (or doping-induced) SRO along with arbitrarily strong local electronic correlations,
not to mention important aspects like the multi-orbital character of realistic transition metal-
based oxide systems, with these approaches would be extremely numerically time-consuming.
Given this, it is imperative to develop semi-analytical routes as far as possible, resulting in
much better (and easier) numerical tractability. On the other hand, many important results
have been gleaned from pioneering field-theoretic studies of the Anderson transition [6].
Perturbative renormalization group (RG) approaches, and extensions thereof, work in the
weak disorder regime, and are a priori inapplicable in the non-perturbative regime where
the Anderson–Mott MIT would be expected to occur in the d = 3 case. As a result, well-
defined precursors of the MIT observed even at very high temperatures, as experimentally
demonstrated [7] in many systems in the form of scaling behaviour of various quantities,
breakdown of Matthiessen rule and the Mooij correlation, cannot be accessed within such
approaches. Thus, while the perturbative (d +ε) [6] approaches have indeed provided a wealth
of information, such approaches are insufficient at strong coupling, which is precisely the
regime of interest for doped transition-metal oxide (TMO) systems, as well as systems like
strongly interacting two-dimensional electron systems (in Si MOSFETs [8]) which have been
found to undergo insulator–metal transitions. This is because one is always effectively in the
strong disorder regime in strongly correlated electronic systems, where the renormalized one-
electron band width is very small (caused by Hubbard band-narrowing) in the correlated metal
(or Mott insulating states, where the band splitting à la Mott–Hubbard mechanism occurs).
Consideration of such cases is out of bounds with perturbative approaches, and this requires
the development of genuinely non-perturbative approaches which should be capable of:

(i) extending the CPA to access Anderson localization effects, and
(ii) having sufficient flexibility to incorporate effects of Mott–Hubbard physics via dynamical

mean-field (DMF) or cluster-DMF approaches.

In this paper, we devise a new cluster-CPA technique that satisfies the above requirements.
It is extremely simple to implement (it requires only the solution of Nc coupled, nonlinear
equations for the Green function for a cluster with Nc sites), captures the intracluster
correlations exactly, and is suited to further improvements (larger cluster size, incorporation
of Mott–Hubbard physics). As we will show, it also reproduces the exact CPA limit [2] for the
single-site cluster (d = ∞).

The CPA is tailor-made to describe the electron dynamics in a system with purely diagonal
disorder when correlations between spatially separated disorder scatterers can be ignored, a
situation which is formally exact in d = ∞. Extensions to include off-diagonal (hopping)
disorder within the CPA framework have been proposed [3] by a variety of authors. Here,
we will propose a different (related to non-local CPA) Green function technique. Using the
equation-of-motion (EOM) technique,we explicitly include the dynamical effects of arbitrarily
strong scattering from short-range correlated disorder potentials. In the process, we will make
explicit contact with the problem of Anderson localization in disordered systems.

2. Model and solution

The first step is the construction of a suitable cluster model Hamiltonian incorporating diagonal
disorder. Motivated by the results of [9], we generalize the Anderson disorder problem to finite
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dimensions by mapping the full Anderson disorder model,

H = −t
∑

〈i, j〉
(c†

i c j + h.c.) +
∑

i

vi ni , (1)

to an effective model of a cluster of Nc sites embedded in an effective (dynamical) bath with
a complex self-energy (matrix of size N2

c ). Here, we assume a binary alloy distribution for
disorder, P(vi ) = (1−x)δ(vi −vA)+xδ(vi −vB), and further, that 〈viv j 〉−〈vi 〉〈v j 〉 = fi j ≡ C ,
a constant parameter. Strictly speaking, the SRO encoded in fi j is a function of x , temperature
and other variables depending on the specific physical situation under consideration, and in
real materials, this dependence should be explicitly taken into account. Given the choice of
an embedded cluster, only consideration of non-local processes on the cluster length scale is
possible (this means consideration of nearest-neighbour disorder correlations for our choice;
see below). Our aim in this work is to study the electronic structure changes accompanying
changes in x, P(vi ) and fi j for a half-filled band.

In contrast to CPA, the method described below is tailor-made to capture the dynamical
effects of repeated scattering from a cluster of sites, which are correlated in a manner
described by fi j over the cluster length scale. To proceed, we start with the embedded cluster
Hamiltonian,

H = −t
∑

α

(c†
0cα + h.c.) + vx0n0 + v

∑

α

xαnα +
∑

k

εkc†
k ck + t

∑

k,α

eikRα (c†
αck + h.c.), (2)

where 0, α = 1, . . . , z denote a central site 0 coupled (via t) to z nearest neighbours
on a d = z/2-dimensional lattice, x0, xα = 0, 1 for a binary disorder distribution P(vi )

taking on two values: vi = 0 with probability (1 − x) and vi = v with probability x ,
εk = 1

N

∑
〈i, j〉 teik(Ri −R j ) is the band dispersion on the original lattice, and the last term

describes the hybridization of site α on the boundary of the chosen cluster with an effective
medium (conduction electron bath function) that has to be self-consistently determined by a
suitable imbedding procedure. We describe the details in the course of the derivation below.

To proceed, we use the exact analogy between the problem of electronic propagation in
a random, binary alloy and the so-called ‘Hubbard III’ solution for the Hubbard model [11],
where one spin species (−σ spins) is assumed to be completely static [2]. In this approximate
solution of the Hubbard model, the local potential felt by a σ -spin electron switches between
v = 0 and U depending on whether the site that it hops onto is empty or already occupied by
a −σ spin electron. In the disordered, paramagnetic phase, this maps exactly to the random
alloy problem we consider here. Given this analogy, we choose to solve the disorder problem
using an extension of the two-time Green function method used by Hubbard (it is now known
that the Hubbard III solution is actually the exact solution for the one-particle Green function
of this ‘simplified’ Hubbard model in d = ∞). This exact analogy means that xα above can
be exactly identified with n−σ in the Hubbard III formulation.

Defining the diagonal and off-diagonal propagators on the cluster as G00(ω) =
〈c0; c†

0〉, Gk0(ω) = 〈ck; c†
0〉, Gα0(ω) = 〈cα; c†

0〉, we start with the equation of motion (EOM)
for G00(ω):

ωG00(ω) = 1 + t
∑

α

Gα0(ω) + v〈x0c0; c†
0〉. (3)

Notice the appearance of a ‘higher-order’ Green function (in analogy with Hubbard III)
on the rhs of equation (3). It is naturally interpreted as the probability amplitude for having an
electron at a site 0 with disorder potential v. Its EOM reads

(ω − v)〈x0c0; c†
0〉 = 〈x0〉 + t

∑

α

〈x0cα; c†
0〉. (4)
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The EOM for Gα0(ω) on the rhs of equation (3) reads

ωGα0(ω) = v〈xαcα; c†
0〉 + tG00(ω) + t

∑

k

Gk0(ω), (5)

and in a way similar to that leading to equation (4), we obtain

(ω − v)〈xαcα; c†
0〉 = t〈xαc0; c†

0〉 + t
∑

k

〈xαck; c†
0〉. (6)

Continuing along with identical lines for the various ‘higher-order’ Green functions
generated in equations (3)–(5) gives us

ω〈x0cα; c†
0〉 = v〈x0xαcα; c†

0〉 + t〈x0c0; c†
0〉 + t

∑

k

〈x0ck; c†
0〉, (7)

ω〈xαc0; c†
0〉 = 〈xα〉 + v〈xαx0c0; c†

0〉 + t〈xαcα; c†
0〉, (8)

(ω − v)〈x0xαcα; c†
0〉 = t〈x0xαc0; c†

0〉 + t
∑

k

〈x0xαck; c†
0〉 (9)

and

(ω − v)〈xαx0c0; c†
0〉 = 〈x0xα〉 + t〈x0xαcα; c†

0〉. (10)

Finally,

(ω − εk)〈A0αck; c†
0〉 = tk〈A0αcα; c†

0〉, (11)

where A0α = 1, x0, xα, x0xα for the various types of Green functions which couple the bath
back to the cluster (see above), and 〈x0α〉 ≡ 〈x0xα〉 is the non-local correlation function of the
disorder potential over the cluster length scale, involving only nearest neighbours for our choice
of cluster (scaling like 1/d in d dimensions). Here, tk is the ‘hybridization’ which couples
the boundary sites α to the bath of ‘conduction electrons’, and is physically identical to the
one-electron hopping term in the original lattice model. For a single-site cluster, we recover
the exact CPA result using the EOM for G00, Gk0, 〈x0c0; c†

0〉 and 〈x0ck; c†
0〉 only. Indeed, in

the single-site limit, the local Green function at the site 0 is easily seen to be

G00(ω) = 1 − 〈x0〉
ω − �(ω)

+
〈x0〉

ω − v − �(ω)
, (12)

which is exactly the CPA (or the Hubbard III, with 〈x0〉 = 〈n−σ 〉) result when we use the fact
that �(ω) = t2G00(ω) for the Bethe lattice, leading to the cubic equation for G00 derived by
Hubbard.

In our cluster generalization, after a long and somewhat tedious algebra, we finally find

G00(ω) = 1 + v〈x0c0; c†
0〉 + (v/t)F2(ω)〈xαcα; c†

0〉
ω − z F2(ω)

(13)

and

Gα0(ω) = 1

ω − �(ω)

vω〈xαcα; c†
0〉 + t (1 + v〈x0c0; c†

0〉)
ω − z F2(ω)

, (14)

where

v〈x0c0; c†
0〉 = v〈x0〉 + (v/t)2〈x0xα〉 F1(ω)F2(ω)

ω−v−F1(ω)

ω − v − F2(ω)
(15)

and

〈xαcα; c†
0〉 = t−1 F1(ω)〈xαc0; c†

0〉, (16)
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with

〈xαc0; c†
0〉 = 〈xα〉 − 〈x0xα〉

ω − F1(ω)
+

〈x0xα〉
ω − v − F1(ω)

. (17)

Here, F1(ω) ≡ t2

ω−v−�(ω)
and F2(ω) ≡ t2

ω−�(ω)
. Finally, the bath function, �(ω) is

computed from the equation [11, 12]

G00(ω) =
∫ +W

−W

ρ0(ε) dε

G−1
00 (ω) + �(ω) − ε

, (18)

where ρ0 is the unperturbed (disorder-free) density of states (DOS).
It is instructive to point out here that the self-consistency condition (equation (18)) looks

like the usual self-consistency condition of single-site DMFT. This is so because the coupling
of the cluster to the ‘bath’ (i.e., the rest of the lattice) is bilinear in the fermions. However,
we draw attention to the fact that G00(ω) is the onsite Green function of the cluster problem,
explicitly dependent on f0α = 〈x0xα〉 − 〈x0〉〈xα〉 via equation (13) above. This last feature is
directly related to the explicit incorporation of intersite correlations of the disorder potentials,
and drops out in d = ∞ (it scales as 1/d). Obviously, the bath function also depends explicitly
on f0α , in contrast to usual CPA, where it can only depend on 〈xα〉 by construction.

At this point, one can show that the cluster-CPA technique developed above always yields
a positive-definite local DOS, defined by ρ(ω) = − Im G00(ω)/π . To show this explicitly, we
observe that G00(ω) can be brought to a convenient mathematical form by simple algebraic
manipulations:

G00(ω) = 1 − 〈x0〉
ω − F2(ω)

+
〈x0〉

ω − v − F2(ω)
−

[ 〈xα〉 − 〈x0xα〉
ω − F2(ω)

+
〈x0xα〉

ω − v − F2(ω)

]

+
〈xα〉 − 〈x0xα〉
ω − F1(ω)

+
〈x0xα〉

ω − v − F1(ω)
. (19)

The first step in the derivation is to notice that each of the numerators is always positive-
definite by definition. Clearly, to show that ρ(ω) is always positive-definite, we have now
only to show that Im �(ω) � 0. From the EOM technique used above, �(ω) = t2G00(ω)

for the Bethe lattice. A straightforward calculation shows that Im �(ω) � 0 for any choice of
the unperturbed DOS, ρ0(ε) � 0. Substitution in G00(ω) above immediately shows that the
disorder-averaged DOS is always positive-definite (clearly, self-consistency does not modify
this conclusion).

A few clarifications concerning the physical meaning of the set of equations are in order
at this point. It is also easy to check that the system of equations are exact both in the band
and the atomic limit, and the CPA result is readily recovered for the single-site cluster. First,
we notice that the cluster Green functions are explicit functions of the higher-order (in 1/d)
SRO correlator, 〈x0xα〉. To interpret the meaning of the bath function, �(ω) in our approach,
we begin by observing that one can view any self-consistent cluster approximation as being a
valid description in a regime with SRO on the cluster length scale (analogous to the single-site
approximation being formally exact at mean-field level). An exact solution of the problem
implies consideration of an infinite cluster, and, of course, is an insoluble problem. Our choice
for �(ω) above is then linked to the mathematical consideration of short-range correlations
over the cluster length scale only, or, equivalently, to the consideration of dynamical effects of
repeated scattering by a cluster consisting of a central site plus its z nearest neighbours only.
The effects of non-local SRO appears explicitly in the bath function �(ω) (i.e., in equation (18))
via G00(ω) as defined in equation (13) with its explicit dependence on f0α . It follows that the
approach describes the carrier dynamics in a situation where the carrier mean-free path is of
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the order of the size of the chosen cluster (l � a, the lattice constant for our cluster) in a fully
self-consistent way (see below), one step beyond the CPA where l = 0.

It is interesting to notice that G00(ω), Gα0(ω) can be (formally) analytically expressed
in terms of the corresponding diagonal and off-diagonal cluster self-energies 	00(ω),	α0(ω)

for d = 1, 2, . . . ,∞, as well as on certain special lattices. The above set of equations then
constitutes a closed set of simultaneous nonlinear equations for the two self-energies, and they
are solved self-consistently to yield the renormalized (by disorder) DOS at the central site,
ρ(ω) = − 1

π
Im G00(ω).

The alloy correlation function (describing SRO) is given by 〈x0xα〉 = 〈x0〉〈xα〉 + f0α in
the general case, with f0α encoding complete information about order–disorder instabilities
in the alloy. It is important to notice that the dynamical effect of strong scattering by these
short-range correlations ( f0α) on the electronic self-energy is explicitly included within our
formulation above. In particular, the electron can undergo repeated scattering on the atomic
sites within the chosen cluster, and, depending upon the degree and character of SRO (see
below), can be localized due to interference effects coming from repeated scattering from
spatially separated centres; i.e., via Anderson localization. To address the issue of Anderson
localization in our non-local CPA (NLCPA) scheme, we follow Economou et al [10] and use
the localization function defined by

L(ω) = K t

∣∣∣∣G00(ω) − G0α(ω)Gα0(ω)

G00(ω)

∣∣∣∣, (20)

where electronic eigenstates with energy ω satisfying

• L(ω) > 1 define extended states,
• L(ω) < 1 define Anderson localized states, and,
• L(ω) = 1 defines the mobility edge.

Here, K is the connectivity of the lattice. The formalism developed above thus allows
one to determine the boundary between localized and extended states and its dependence
on lattice structure, type of SRO, and band-filling. We are presently unable to compute
the localization length and its critical behaviour as the Anderson transition is approached.
This is mainly related to the prohibitive numerical cost involved in treating larger clusters.
Let us, however, point out that Economou et al [10] have even used the single-site CPA to
evaluate the localization criterion. More recently, Dobrosavljević et al [13] have used related
ideas, again using the CPA propagator, to study Anderson localization. Our approach extends
these calculations by explicitly incorporating intersite alloy correlations in the cluster Green
functions, as emphasized above (cf equations (3)–(18)). Of course, events corresponding to
‘rare’ potential fluctuations cannot be easily incorporated into a cluster theory such as ours.
Hence, such cluster approximations cannot yield the DOS tails, a feature they share with
single-site DMF theory.

3. Numerical results and discussion

In this section, we describe the results obtained from the numerical solution of the self-
consistent set of coupled nonlinear equations derived in the previous section. Since we
are interested in the generic effects of atomic SRO on the carrier dynamics, we choose the
semicircular unperturbed DOS ρ0(E) = 2

πW 2

√
W 2 − E2 as an approximation to the actual

DOS for a three-dimensional cubic lattice [11]. This leads to a considerable simplification in
the numerics without affecting the generic features qualitatively. We work with W = 1.424 eV
and study the fully renormalized DOS, ρ(ω) and L(ω) as functions of the alloy composition
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Figure 1. Cluster-CPA DOS the binary-alloy distribution in the extreme SRO limit on a Bethe lattice
for 〈x0〉 = 0.5, 〈x0α〉 = 0.0 and various values of the local disorder potential, v = 0.1, 0.2, 0.3, 0.4.
Shaded regions define extended states, and unshaded regions define Anderson localized states.

y = (〈x0〉/(1−〈x0〉)), the atomic SRO parameter f0α and the disorder strength v for a half-filled
band.

Before describing our results, it is instructive to consider the correctness of the formalism
in special limiting cases. As is obvious from equations (13)–(19), the correct band and atomic
limits are reproduced, as is the CPA for a single-site cluster. Further, 〈x0xα〉 = 〈x0〉〈xα〉+ f0α =
x2 + f0α with f0α = 0 for a completely random alloy. In the general case, the small-x limit,
the random scatterers are far apart from each other, so that f0α = 0 in our cluster problem for
scatterers separated by a distance R > ξ , the largest cluster size under consideration. Using
equation (19), we get

G00(ω) = (1 − x)

[
1 − x

ω − F2(ω)
+

x

ω − v − F2(ω)

]

+ x

[
1 − x

ω − F1(ω)
+

x

ω − v − F1(ω)

]
, (21)

showing that our pair-cluster approximation indeed gives the correct behaviour for the Green
function (�x2) in the small-x limit. This fulfils one of the acceptable criteria for an acceptable
‘p-centre’ approximation. Finally, we have checked that our renormalized cluster DOS
intersects the CPA DOS eight times, implying that our cluster extension exactly reproduces the
first eight moments of the DOS (cf CPA, which reproduces the first seven moments exactly).

We begin with the symmetric case with y = 1, and extreme random disorder, i.e., f0α = 0
or 〈x0α〉 = 〈x0〉〈xα〉. In d = ∞, this corresponds to the CPA, with the metal–insulator transition
occurring continuously at v � W . Inclusion of SRO drastically changes the picture. The M–I
transition now occurs much earlier. In fact, the band-split regime occurs for v/W � 1/4.
However, states near and at the band centre become Anderson localized before the band splits
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Figure 2. Cluster-CPA DOS on a Bethe lattice for 〈x0α〉 = 0.0, v = 0.5 and different alloy
concentrations, 〈x0〉 = 0.4, 0.3, 0.2, 0.1.

(figure 1) and the metal (incoherent)–Anderson insulator transition is continuous. For v < vc,
the incoherent metal has a very similar character (breakdown of the quasiparticle) to that found
in d = ∞ (CPA). It is also clear that the configuration-averaged single particle DOS shows
no anomalies across the Anderson localization transition, in agreement with well-known [13]
arguments.

In figure 2, we show the effect of changing the alloy composition on the critical value
of v needed to split the band. For the case y = 2/3 (i.e., 〈x0〉 = 0.4), a larger vc = 0.5 is
required to localize sates at EF, and it increases to vc = 0.85 for y = 3/7(x = 0.3). This
Anderson insulating state (notice that the Fermi level, denoted by the vertical lines in our plots,
lies in the region of localized states) is explicitly related to our inclusion of the effect of carrier
scattering on short-range intersite atomic correlations ( f0α = C) and is never observed in the
CPA solution (d = ∞), which always predicts an incoherent metal for a (half-filled band)
particle–hole asymmetric disorder distribution. A continuous transition from an Anderson
localized insulator to an incoherent metal is clearly seen upon decreasing y for a fixed disorder
strength.

Next, we focus on the effect of varying the SRO parameter on the electronic structure. In
figure 3, we show the DOS for v = 0.5 for different values of 〈x0α〉 = 0.1, 0.2, 0.3, 0.4.
Clearly, introducing partial order (actually, this corresponds to increasing f0α) results in
increased tendency to itinerance, moving EF out of the region of localized states. The AL
insulator to incoherent metal transition is clearly observed with increasing f 0α, and is a concrete
illustration of an insulator–metal transition driven by the degree of atomic SRO (partial order) in
a system. Clearly, increasing partial order (notice that increasing f0α corresponds to increasing
the probability of having the same potential on the cluster sites) reduces the localizing effect
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Figure 3. Effect of partial SRO on the cluster-CPA DOS for a Bethe lattice with 〈x0〉 = 0.5,
v = 0.5 and 〈x0α 〉 = 0.1, 0.2, 0.3, 0.4.

of strong (repeated) intracluster disorder scattering, driving the I–M transition via increased
itinerance. The situation is analogous to the case where the pure Anderson disorder model
is supplemented by additional short-range correlations in the hopping [14], where increasing
the off-diagonal randomness drives an insulator–metal transition for a fixed diagonal disorder
strength.

Qualitatively similar behaviour is seen for an asymmetric alloy distribution. In figure 4,
we show the DOS for v = 0.5 and y = 3/7 (i.e., 〈x0〉 = 0.3). Interestingly, the spectrum
shows additional features, but the AL insulator–metal transition with increasing f0α follows
the trend for the symmetric (y = 1) case.

Increasing the ratio v/W reveals rich structures in the DOS. In figure 5, we show the
one-electron DOS for v = 1.5 with 〈x0α〉 = 0.0, 0.1, 0.2, 0.3. Next, we turn our attention
to figure 6, which shows the evolution of the DOS for the asymmetric alloy distribution with
〈x0〉 = 0.3 for the same parameters. In this case, we are already in the split-band regime. Very
rich structure is seen in the results. For comparison, we know that the corresponding DOS
obtained for these cases within the CPA (d = ∞, not shown) shows a split-band structure
with only upper and lower ‘Hubbard’ bands. Obviously, the CPA is incapable of resolving
the fine structure in the DOS originating from repeated scattering between spatially separated
scattering centres. The rich structures seen in the cluster generalization correspond partially
to these effects, and can be traced back to the spectrum of eigenstates of the isolated cluster.
In fact, the multiple subbands can easily be shown to be centred around eigenenergies of
the isolated cluster for the case of the symmetric alloy distribution with f0α = 0. However
(figures 5 and 6), in the general case with f0α �= 0, one sees eight or nine distinct subband
structures. We interpret the additional structures as arising from atomic SRO (non-zero f0α);
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Figure 4. Effect of partial SRO on the cluster-CPA DOS for a Bethe lattice with 〈x0〉 = 0.3,
v = 0.5 and 〈x0α 〉 = 0.0, 0.1, 0.2, 0.3.

in particular from ‘shake-up’ effects originating from strong resonant scattering of carriers
(from the atomic SRO) from cluster sites. For comparison, we remark that coupling the
two-site cluster to the ‘bath’ (rest of the lattice) via second-order processes in the hopping
(corresponding to the ‘Hubbard I’ approximation for the cluster) is incapable of accessing
SRO effects in a consistent way. In particular, in addition to violating the Hubbard sum
rules [15], it cannot yield ‘shake-up’ features in the DOS, always yielding only six bands
centred around the eigenvalues of the two-site cluster, and broadened by an amount O(t). This
discussion shows the importance of treating the effects of both itinerance (via �(ω)) and the
(incoherent) resonant scattering on the same footing, and reveals the weaknesses inherent in
uncontrolled approximations.

Additional interesting features observed from the calculations deserve comments. We
clearly observe that the localization function L(ω) shows non-analytic behaviour near each
subband edge, but no non-analyticities across the mobility edge. More detailed characterization
of the Anderson insulator–metal transition requires a detailed study of the two-particle
responses [16](density correlations, optical conductivity), and is left for future work.

Given the close analogy between the problem of electron propagation in a random
alloy and the Hubbard III solution in the paramagnetic disordered state, we expect that our
formulation employing the equations-of-motion technique for two-time Green functions can
also be rewritten in the t-matrix formulation, along the same lines which allows the Hubbard III
solution to be rewritten in alloy language, supplemented with the requirement of zero scattering
‘on the average’ in a self-consistently determined effective medium. The cluster case requires
one to keep second-order terms like G0tG0tG0 (here, G0 and t are Nc X Nc matrices for a cluster
having Nc sites) in the t matrix expansion linking a given site to itself (diag[t]) as well as to its
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Figure 5. Cluster-CPA DOS for 〈x0〉 = 0.5, v = 1.5 and 〈x0α 〉 = 0.0, 0.1, 0.2, 0.3.

neighbours (off-diag[t]), and leads one to having to solve for the matrix Green function under
the simultaneous requirement 〈t00〉 = 0 = 〈t0α〉 (〈· · ·〉 is the disorder average, as in CPA).
While these equations have been employed in earlier works [3, 19] (indeed, a short discussion
concerning this general form already appears in the original paper of Velický et al [2]), we
are unaware of systematic incorporation of effects coming from non-zero f0α in these earlier
works.

A more rigorous test of the quality of our cluster approximation would be to apply it to
the extreme case of the one-dimensional Anderson disorder problem, for which numerically
exact histogram results are available. While our cluster problem does give results which are
closer to the histogram results with regard to those obtained from the CPA (which, as is known,
completely misses the fine structure in the DOS arising from non-local disorder fluctuations),
we have found on closer inspection that incorporation of longer-range alloy correlations is
necessary to obtain meaningful quantitative agreement. While this issue is being studied, and
will be addressed in the future, we wish to point out that a cluster-based scheme like ours is
designed for, and should be a good approximation in, spatial dimension d > 2 (recall [6] that
for d � 2, all states are Anderson localized for any value of disorder, though the localization
is weak for small disorder; this is extremely hard, if not impossible, to access with a self-
consistent cluster theory). We draw attention to the fact that Rowlands et al [18] have studied
exactly this problem keeping four sites on a chain coupled to an appropriate bath using the
KKR-NLCPA (DCA), obtaining satisfactory agreement with the exact results. Our results do
show some resemblance to theirs; however, more work is required to elucidate this point in
more detail. In contrast to their work, we have considered the issue of Anderson localization
and partial order-driven insulator–metal transitions for d > 2. Further, our treatment of partial
SRO is very different from theirs. It is worth pointing out that our results, along with the
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Figure 6. Cluster-CPA DOS for 〈x0〉 = 0.3, v = 1.5 and 〈x0α 〉 = 0.0, 0.1, 0.2, 0.3.

NLCPA ones, are quite different from those obtained by Jarrell et al [5]. However, we are
presently unable to quantify the reasons behind these differences.

Finally, our approach shares some formal similarities with the one developed by Miwa
et al [17]. There are some notable differences, however, between our approach and theirs.
First, their approach is based on the t-matrix formulation and a locator expansion for the local
Green function, while ours is based on the equation-of-motion technique for two-time Green
functions, à la Hubbard III. While they expect to capture two more moments beyond CPA, this
is not shown explicitly there. Our technique captures the first eight moments of the spectral
function, as described above. Second, their approach, to our best knowledge, has not been
explicitly extended to treat the effect of non-zero f 0α on the local DOS, and in particular to study
the insulator–metal transition driven by increasing partial order, in contrast to our technique.
Along with the other non-local CPA schemes mentioned above (except that of Jarrell et al
[5]), the possibility of Anderson localization due to finite f0α has not been considered. The
advantage of our formulation is that it allows a study of such effects to be carried out. Further,
we have shown that our DOS is always positive definite, and so we believe that our cluster
extension is analytic in the complex energy plane. An explicit derivation of analyticity of our
cluster-CPA technique will be presented separately.

We emphasize that the approach developed here has a wide applicability to various strong
coupling cases in three dimensions where the effect of atomic (chemical), magnetic, Jahn–
Teller, etc, SRO on the character of carrier dynamics is an important issue. In particular,
it should be applicable to the problem of electronic structure of disordered transition-metal
alloys [19, 17], and to more recent cases such as hole-doped manganites [20], where a plethora
of experimental work clearly demonstrates the importance of such effects in a correlated
environment. Applications to such systems are in progress and will be reported elsewhere.
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